As mentioned in the previous post, the simulation uses a half-edge data structure to handle refinement of the surface mesh as it grows. When an edge exceeds a specified maximum length, it splits (along with the triangles on either side). Edges are also spun to unify vertex valence throughout the mesh, resulting in well-proportioned triangles that are ideal for all sorts of things. The video above shows the effect of different maximum edge lengths on the growth process (from large to small).

The half-edge mesh is particularly well-suited to this process because it allows such local topological modifications to be executed in constant time. In other words, splitting an edge will always take the same amount of time regardless of how many other edges are in the mesh. This property is especially important here since we’re working with an algorithm that tends to dramatically increase its own input size from one iteration to the next. Without constant-time topological operators, things would quickly get out of hand.

]]>It’s pretty sparse at the moment but I’m hoping to gradually flesh it out over the coming weeks. For now, if there’s a particular part of the library you’d like clarification on, send an email or leave a comment.

**17.08.07 Update:** Links to documentation by version number can now be found on the code page.

The process shown in the video above makes use of a phase field model to track an evolving interface between a supercooled liquid and a solid. While this seemed like unfamiliar territory at first, a quick look under the hood revealed a set of reaction-diffusion-like equations. The system is represented by two co-dependent scalar fields – one representing temperature and one representing the phase. The latter is either 0 (liquid) or 1 (solid) everywhere in the system except at the interface where it grades smoothly between the two extremes. At each step, the current temperature contributes to the change in phase and the change in phase contributes to the change in temperature. Over time, this feedback leads to instabilities in the interface which result in all the fancy branching patterns.

The Grasshopper definition is available here. Note that it uses the current release of SpatialSlur.dll which can be downloaded here.

]]>Besides being an extremely effective means of procrastination, it turned out to be a useful test for several classes within the SpatialSlur library – most notably HeMesh for the dynamic mesh refinement and SpatialHash3d for quickly handling vertex collisions.

]]>After fumbling around at Blogger for years, I decided it was time to relocate to a more hospitable corner of the internet. Here we are. Much like its predecessor, this website will function as a personal documentation tool for ongoing computational design research. For more info, visit the About page.

Alongside the new website, I’ve also published an open source code library by the same name on GitHub. I’ll be making use of it in many of the examples posted here, so if you’re interested in following along, check out the Code page.

]]>